If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-19x-18=0
a = 3; b = -19; c = -18;
Δ = b2-4ac
Δ = -192-4·3·(-18)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{577}}{2*3}=\frac{19-\sqrt{577}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{577}}{2*3}=\frac{19+\sqrt{577}}{6} $
| 3x^2-19x918=0 | | (x-20x)=4200 | | 20=14-3x | | 50.1x^2-19.4x-1=010^-6 | | 50.1x^2-19.4x-1=0 | | 25=-10+5r | | (28+3(2x-7))=49 | | -12+20x=20x-60 | | 9=-2m-3 | | ×2-7×2+5=x(×2-1)+3×2-2 | | 90+82+81+2*x/5=86 | | 6x-18=14x+3 | | 7(x-7.1)=9.1 | | -4.6x+1.2=-21.8 | | 12+2x-6=40-5-9+3x | | 5x-7=2-4 | | (k+1)(2k-5)=0 | | 18x^2=17 | | (-6x+15=-6x+15) | | X2=5x6-6/2,5 | | Y2+12=7y/4,-3 | | X/6-x/9=-1 | | 5x+9=3x+45 | | √9x-2=4 | | 3/2+x/4=4 | | X2=5x-6/2,5 | | 2y-9=y/2 | | Y-2=-y-2 | | 7/5x+5=3/x+1-4/5 | | X2+2x+2=-x2+x-1 | | 2/3x(1/2)x=1/6 | | -x-3=x-6 |